

Distributed Space Systems

Nanosat Demonstrations

Dr. Jesse Leitner
GSFC DSS Lead Engineer
Jesse.Leitner@gsfc.nasa.gov
301-286-2630

Distributed Space Systems- Revolutionizing Earth & Space Science

Co-observation

Coincidental Observations

Interferometry

Multi-point observation

Tethered Interferometry

A new era of space exploration will be enabled by cooperating spacecraft

Distributed Spacecraft Missions

Projected Launch Year	Mission Name	Mission Type
00	New Millennium Program (NMP) Earth Observing-1 (2)	Earth Science
01	Gravity Recovery and Climate Recovery (GRACE) (2)	Earth Science
03	University Nanosats (AFRL/GSFC) ORION nanosat mission (2)	Technology Demonstrator
03	University Nanosats (AFRL) 3 Corner Sat misson (3)	Technology Demonstrator
03	University Nanosats (AFRL/GSFC) ION-F mission (3)	Technology Demonstrator
	Synchronized Position Hold Engage & Reorient Experimental Satellites	Technology Demonstrator
03	NMP ST-5 Nanosat Constellation Trailblazer (3)	Space Science
04	Techsat-21/AFRL (3)	Technology Demo
04	Auroral Multiscale Mission (AMM)/APL	Space Science/SEC
04	ESSP-3-Cena (w/ Aqua) (2)	Earth Science
05	Starlight (ST-3) (2)** (ground-based only at the moment)	Space Science/ASO
05	Magnetospheric Multiscale (MMS) (4)	Space Science/SEC
06	MAGnetic Imaging Constellation (MAGIC) (7, string of pearls)	Space Science
06	COACH (2-3)	Earth Science
07	Global Precipitation Mission (EOS-9)	Earth Science
07	Geospace Electrodynamic Connections (GEC)	Space Science/SEC
08	Constellation-X (4)	Space Science/SEU
08	Magnetospheric Constellation (DRACO) (50-100)	Space Science/SEC
08	Laser Interferometer Space Antenna (LISA) (3)	Space Science/SEU
09	DARWIN Space Infrared Interferometer/European Space Agency	Space Science
10	Leonardo (GSFC) (4-8)	Earth Science
15	Stellar Imager (SI) (10-30)	Space Science/ASO
	Astronomical Low Frequency Array (ALFA)/Explorers	Space Science
12	MAXIM Pathfinder (2-3)	Space Science/SEU
05+	Living with a Star (LWS) (many)	Space Science
05+	Soil Moisture and Ocean Salinity Observing Mission (EX-4)	Earth Science
05+	Time-Dependent Gravity Field Mapping Mission (EX-5)	Earth Science
05+	Vegetation Recovery Mission (EX-6)	Earth Science
05+	Cold Land Processes Research Mission (EX-7)	Earth Science
05+	Hercules	Space Science/SEC
05+	Orion Constellation Mission	Space Science/SEC
15	Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) (3)	Space Science/SEU
20+	Planet Imager (PI)	Space Science/ASO
20	MAXIM X-ray Interferometry Mission (34)	Space Science/SEU
15+	Solar Flotilla, IHC, OHRM, OHRI, ITM, IMC, DSB Con	Space Science/SEC
15+	NASA Goddard Space Flight Center Earth Sciences Vision	Earth Science
15+	NASA Institute of Advanced Concepts/Very Large Optics for the Study of Extrasolar Terrestrial Planets 3	Space Science

NMP EO-1 Enhanced Formation Flying (EFF) Experiment

Level - I:

Demonstrate the Capability to Fly Over the Same Ground Track As LandSat-7 Within 3 Km at a Nodal Separation Interval of Nominally One Minute During Which Time an Image Is Collected.

Level-II:

EFF- Shall Provide the Autonomous Capability of Flying Over the Same Groundtrack of Another S/C at Fixed Separation Times.

Autonomy - Shall Provide On-Board Autonomous Relative Navigation and Formation Flying Control for EO-1 and LandSat-7.

AutoCon Flight Control System - Shall Provide Autonomous Formation Flying Control Via AutoCon (to provide future reusability).

Ground Track - EO-1 Shall Fly the Same Ground Track As LandSat-7.

Separation - EO-1 Shall Remain Within a 1-Minute In-Track Separation from LandSat-7.

Magnetospheric Multi-scale

How do small-scale processes control largescale phenomenology, such as magnetotail dynamics, plasma entry into the magnetosphere, and substorm initiation?

- •4 identical spacecraft in a variably spaced tetrahedron (1 km to several earth radii)
- •4 orbit phases, orbit adjust
- •2 year in-orbit (minimum) mission life
- Interspacecraft ranging and communication
- •Advanced instrumentation, integrated payload

J. Leitner Wednesday, May 08, 2002

DRACO - Magnetospheric Constellation

Fundamental measurements: magnetic field, plasma flow field, and energetic particle acceleration

- •50-100 nanosatellites "weather observatories"
- •Orbits have 3Re perigee with varying apogees from 12Re to 42Re.
- •Nanosats communicate with ground during perigee region.

J. Leitner 6 Wednesday, May 08, 2002

The Black Hole Imager: Micro Arcsecond X-ray Imaging Mission (MAXIM) Observatory Concept

32 optics (300 × 10 cm) held in phase with 600 m baseline to give 0.3 micro arc-sec

34 Formation Flying Spacecraft

System is adjustable on orbit to achieve larger baselines

Optics

spacecraft campaigns

DSS Technology Development Areas

Intersatellite Communications

Hardware, software, and advanced coding and compression algorithms to satisfy unique DSS communications needs

The end-to-end DSS systems analysis

Relative Navigation

Decentralized Control Full Capability

NASA & the AFRL University Nanosat Program

interaction - cooperation - collective behavior

Integration and Infusion of DSS Technologies

DSS- integrating and validating systems solutions to enable Enterprise multi-spacecraft missions

Formation Flying Space Testbed: ORION

Operational Characteristics

- − Mass: ~ 40 kg
- Size: 45 cm cube
- T_{max}: 0.2 N / thruster
- ITB/M: 100 μm/s
- MTL/M: 0.01 m/s²

- GN₂ Propulsion System
 - 12 thrusters: 4x3 asymmetric
 - $I_{sp} \sim 70 \text{ sec}$
 - $-\Delta V_{total}$: 25 m/s
 - torquer coils for detumbling

- Active station-keeping (cold gas) and 3-axis stabilization
- Advanced inter-spacecraft communication
- Relative sensing and control (carrier phase differential GPS).

ORION2 Experiment Objectives

- Provide a comprehensive on-orbit demonstration of true formation flying spacecraft
 - Demonstrate technologies to enable a *virtual platform*
 - GPS sensing and fleet control
 - Significant interest from both NASA & USAF
 - Demonstrates the key technology element to be used on the TechSat-21 mission (prototype of same hardware, algorithms, and software)
- Low-cost to NASA
 - Micro-satellites developed using techniques from the Space Systems Development Laboratory.
- High-risk, but
 - Most technology developed in-house, so no major investments.

Technical Goals

- Demonstrate control for a cluster of micro-satellites.
 - Real-time autonomous control software
 - Formation directed at a high-level from the ground.
- Demonstrate GPS receiver for real-time attitude & relative navigation
 - First on-orbit demonstration of CDGPS for precise relative navigation and control
 - Expect <<1 m (relative radial) for determination & 5 m (relative radial) for control.
 - Low-power, low-cost, attitude capable GPS receiver.
- Various control architectures, real-time inter-vehicle communications link, and local ranging systems

Current status

- Funding from GSFC
 - FY00: \$1+M (SOMO+ Explorers + CETDP)
 - FY01: \$1+M (SOMO + CETDP)
 - FY02: \$200k (after Code R cuts)
- Students transitioned into the workforce
 - AFRL, GSFC, Industry dozens
- Launches planned in late 2003
- Currently OSC shuttle safety support team is reviewing ION-F and ORION end-to-end.
- Integration for ORION and ION-F to take place at GSFC
 - Need to transfer sponsorship to NASA
- Integration for 3 CornerSat to take place at AFRL
 - DoD sponsorship in place, via SERB process (STP)

J. Leitner 18 Wednesday, May 08, 2002

Lessons Learned

- Plan from the start on successful flight as end goal
 - Education is key, but ride commitments expect delivery
- Carefully consider delineation of spacecraft development and assembly tasks between the universities and government/industry organizations
 - Safety process should involve safety experts
 - Try to minimize the use of students in performing very mundane but tedious tasks
- Carefully consider contract and agreement mechanisms among all parties involved.
- Plan as a long-term activity, not year-by-year

J. Leitner 19 Wednesday, May 08, 2002